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a b s t r a c t

A system reduction scheme related to a multibody formulation of wind turbine

dynamics is devised. Each substructure is described in its own frame of reference, which

is moving freely in the vicinity of the moving substructure, in principle without any

constraints to the rigid body part of the motion of the substructure. The system

reduction is based on a component mode synthesis method, where the response of the

internal degrees of freedom of the substructure is described as the quasi-static response

induced by the boundary degrees of freedom via the constraint modes superimposed in

combination to a dynamic component induced by inertial effects and internal loads. The

latter component is modelled by a truncated modal expansion in fixed interface

undamped eigenmodes. The selected modal vector base for the internal dynamics

ensures that the boundary degrees of freedom account for the rigid-body dynamics of

the substructure, and explicitly represent the coupling degrees of freedom at the

interface to the adjacent substructures. The method has been demonstrated for a blade

structure, which has been modelled as two substructures. Two modelling methods have

been examined where the first is by use of fixed–fixed eigenmodes for the innermost

substructure and fixed–free eigenmodes for the outermost substructure. The other

approach is by use of fixed–free eigenmodes for both substructures. The fixed–fixed

method shows good correspondence with the full FE model which is not the case for the

fixed–free method due to incompatible displacements and rotations at the interface

between the two substructures. Moreover, the results from the reduced model by use of

constant constraint modes and constant fixed interface modes over a large operating

area for the wind turbine blade are almost identical to the full FE model.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible multibody based simulations of the dynamic behaviour of a wind turbine requires a discretization in space for
each substructure of the system. Typically, this is done by an FE method, often involving many degrees of freedom for each
substructure. In order to reduce the computational effort, reduced order models of the substructures need to be
implemented. Especially, this is necessary in stochastic analyses based on Monte Carlo simulations, or during the design
phase of a wind turbine, where multiple load cases need to be analysed. A reduced order model is also necessary in some
active vibration control algorithms, where the structural model must be processed in real time. Due to the geometric
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complexity of the blades, which otherwise requires many elements to model, the system reduction in this paper is focused
on the blades.

The basic idea of flexible multibody dynamics is to introduce a moving frame of reference to each substructure. Relative
to the moving frame elastic displacements are relatively small, rendering linear analysis possible. Hence, nonlinearities are
confined to the description of the moving frame. This is defined by a position vector and a parameter vector, also known as
a pseudovector, defining the origin and rotation of the moving frame relative to a fixed frame of reference. The standard
formulation of multibody methods requires that there is no rigid-body motion between the substructure and its moving
frame. In Agrawal and Shabana [1] an automated method is derived to eliminate the rigid-body motion of the body relative
to the moving frame. This is done by imposing reference conditions by use of a boolean matrix on the shape functions
whereby the deformation modes become consistent with the boundary conditions. In Shabana [2] it is demonstrated that
two sets of deformation modes associated with two different sets of boundary conditions e.g. simply supported and
free–free can be used to obtain the same solution provided that the moving frame is properly selected. The position and
orientation of the moving frame is defined by a set of Lagrangian coordinates that describe the rigid-body translation and
rotation. Hereby, these coordinates become a part of the degrees of freedom of the multibody system, see e.g. Nikravesh [3],
Garcı́a and Bayo [4], Géradin and Cardona [5] and Shabana [6]. The use of such a mixed set of referential and elastic
coordinates leads to highly nonlinear system equations. Further, as a result of the inertial coupling between the said
degrees of freedom the mass matrix depends on the referential coordinates, even when formulated in the moving frame. To
circumvent these difficulties Kawamoto et al. [7–10] suggested to let the moving frame of reference float in a controlled
way relative to the moving substructure, so these are always sufficiently close to each other, in order for the small
displacement assumption to be fulfilled. Hereby, the system matrices do not depend on the generalized coordinates by
explicitly predicting the rigid-body motion. To reduce or eliminate the gap between the predicted and actual motion, it is
necessary to regularly update the motion of the moving frame of reference as demonstrated in Kawamoto et al. [10]. The
main difference to the multibody formulation described in Agrawal and Shabana [1] and Shabana [2] is that the parameters
for the moving frame do not enter as degrees of freedom in the system state vector and that it is possible for the body to
have a small rigid-body displacement relative to the moving frame. In Kawamoto et al. [7] the updating scheme is originally
described, where the orientation, angular velocity, and angular acceleration of the moving frame are updated based on a
local triad linked to four nodes in the body. In Kawamoto et al. [8] the local triad is updated based on a polar
decomposition. In Kawamoto et al. [9,10] rigid-body modes are used to update the motion of the moving frame. In a
previous paper by the present authors [11] the same approach as described in Kawamoto et al. [8] by using a freely moving
frame in a multibody formulation is adopted. Here, the wind turbine blade is modelled by only one multibody and reduced
by a Ritz bases consisting of rigid-body and elastic fixed-base eigenmodes. Moreover, the quasi-static contribution from the
truncated elastic modes is included in the formulation. In order to get a better description of the large nonlinear
displacements of a wind turbine blade it is necessary to include more than one multibody in the blade. The purpose of the
present paper is to demonstrate a general approach for including an arbitrary number of reduced multibodies to model e.g.
a wind turbine blade. The updating scheme of the moving frame of reference in the present paper follows the same
principles as described in Kawamoto et al. [8]. A small change when updating the moving frame is presented, where the
orientation of the moving frame is updated based on the motion of two boundary nodes. It is possible to use other nodes
than the boundary nodes in the updating procedure. The selected updating nodes may even be shifted during a numerical
simulation, if this is considered favourable in reducing the displacements of the substructure relative to the moving frame.
It should be noticed that possible geometrical nonlinear elastic deformations may be further reduced or removed by
subdividing the considered substructure.

The following outline presumes a partitioning of the degrees of freedom of the substructure in the boundary
degrees at the interface to the adjacent substructures and the remaining interior degrees of freedom. Static condensation
proposed by Guyan [12] completely ignores dynamics of the interior degrees of freedom, which are described as a linear
function of the boundary degrees of freedom. Hence, the substructure is completely described by the boundary degrees of
freedom. It is well-known that this method in principle is a Ritz method, and hence leads to an overestimation of the
natural frequencies, see e.g. Bathe [13]. The so-called dynamic condensation method, proposed by Leung [14–16],
Petersmann [17] and others, is an extension of the static condensation method in the sense that a few boundary degrees of
freedom are kept and the remaining interior degrees of freedom are eliminated in terms of these. Contrary to static
condensation, the condensation matrix contains inertial and damping terms for the interior degrees of freedom and
thereby time derivatives of these, which make iterations necessary. Often the Guyan reduction is used in the first iteration.
Variants of the iterative methods have been given in [18–21]. In the present paper no iterations are performed in the
condensation matrix. The method resembles the specific realization of the component mode synthesis (CMS) method
known as the constraint-mode method, which consists of rigid-body modes, constraint modes and fixed interface normal
modes to describe the interior dynamics, Hurty [22,23]. Constraint modes are defined as static deformation modes, where
the substructure is free of internal loads, and where each boundary degree of freedom in turn is given a unit displacement
with the remaining boundary degrees of freedom fixed. Hence, these modes represent the modes available in static
condensation. The fixed interface normal modes representing the interior dynamics are determined from the generalized
eigenvalue problem of the internal degrees of freedom. Craig and Bampton [24] simplified the approach considerable by
treating rigid-body modes as a special case of constraint modes. The method in the present paper is based on this
Craig–Bampton method.
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Ambrósio and Gonc-alves [25] used a traditional multibody formulation with a mixed set of reference and elastic
coordinates. The elastic coordinates were later described by a reduced number of fixed interface modal coordinates.
Shanmugan and Padmanabhan [26] have described a hybrid fixed–free CMS method for rotordynamic analysis which
showed better accuracy than the traditional fixed–fixed and free–free methods. The reason for this is that the boundary
displacements in this case represent the exact coupling degrees of freedom, unaffected by the interior dynamics. This
compatibility is also achieved by the method in the present paper, and its importance is demonstrated by modelling the
blade by two substructures both by use of fixed–free eigenmodes. Hereby, compatibility at the assembling point
between the two substructures is not fulfilled, except for a large number of included eigenmodes. Moreover, the
purpose in this paper is to demonstrate that constant constraint modes and constant fixed interface normal modes can be
used over a wide operating area, where the wind turbine blade speeds up from a stopped situation to its nominal operating
situation.

2. Moving frame of reference formulation of multibody dynamics

The idea is to describe the motion of a substructure in a ðx1; x2; x3Þ-coordinate system, which is freely moving in the
vicinity of the substructure. Further, a fixed ðx̄1; x̄2; x̄3Þ-coordinate system is introduced common for all substructures.
Accordingly, fixed frame and moving frame components of vectors and tensors will be indicated with and without a bar,
respectively. The origin of the moving coordinate system is described by a position vector with the global components x̄c ,
and its rotation is determined by the parameter vector (or pseudovector) h. The angular velocity and angular acceleration
vectors of the moving frame are specified by their moving frame components x and a, respectively. Generally, the
substructure may drift away from the moving frame, which requires sequential updating of the position, velocity and
acceleration of the origin together with the rotation, angular velocity and angular acceleration vectors to ensure small
displacement components of the substructure relative to the moving frame, but also for the gyroscopic loads on the
substructure to be determined with a satisfying accuracy. The essential point is that the degrees of freedom for the
substructure and the parameters defining the moving frame are independently specified. Therefore, it is possible to have
rigid-body displacements of the body relative to the moving frame. This gap should be sufficiently small in order for the
small displacement assumption to be fulfilled. The gap can be reduced or eliminated by updating the motion of the moving
frame iteratively. At time t ¼ tj the position of a substructure and its belonging moving frame of reference are illustrated in
Fig. 1a. s is a position vector along the moving x3-axis, identifying a given cross-section of the beam, and uðs; tÞ is the
moving coordinates of the displacement field for the centroid of the cross-section. uðs; tÞ is determined by shape functions
in the FE model and mode shapes in the reduced model, both with corresponding generalized coordinates yðtÞ and wðtÞ,
respectively. Figs. 1b and c display various possibilities for updating theposition of the moving frame of reference relative to
the moving beam-like substructure at the time tjþ1 ¼ tj þDt where Dt denotes the elapsed time step. Figs. 1b and c show
the cases, where the motion at one and two boundary nodes, respectively, will be used to update the parameters for the
moving frame. The latter will in most cases reduce the displacements of the substructure from the moving frame compared
to only using one boundary node in the update. Because the moving frame of reference parameters enter the equations of
motion it is necessary to iteratively update these parameters together with the motion of the substructure, which will be
described in a later section.

First, the equations of motion for a constrained multibody system are described. The position vector to a material point
within the substructure has the following moving and fixed frame components:

xðs; tÞ ¼ sþ uðs; tÞ (1)

x̄ðs; tÞ ¼ x̄c þ Rðsþ uðs; tÞÞ (2)
Fig. 1. (a) A substructure and the belonging moving frame of reference at time t ¼ tj . At time tjþ1 ¼ tj þ Dt the moving frame of reference has been

updated based on: (b) the motion of one boundary node; (c) the motion of both boundary nodes.
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where R stores the components of the rotation tensor related to the moving frame. R is defined by the pseudovector h as
given by the Rodriquez formula, see e.g. Shabana [6]

R ¼ cos yIþ ð1� cos yÞnnT þ sin yñ (3)

where n ¼ h=jhj is the rotation unit vector. nnT is the outer product of this vector with itself, and ñ is the spin matrix
related to n. ñ is given as

ñ ¼

0 �n3 n2

n3 0 �n1

�n2 n1 0

2
64

3
75 (4)

½n1;n2;n3� specify the components of n. These are the same in the fixed and the moving coordinate systems. The
corresponding moving frame components of the velocity and acceleration vector of the material point become

v ¼ vc þ x̃ðsþ uÞ þ _u (5)

a ¼ ac þ ðãþ x̃x̃Þðsþ uÞ þ 2x̃ _uþ €u (6)

where a ¼ _x. x̃ and ã denote the spin matrices in moving coordinates related to x and a. The first term vc in Eq. (5) is the
translational velocity of the moving frame, the second term x̃ðsþ uÞ is the rotational velocity, and the last term _u stores the
moving coordinates of the velocity from elastic deformations and rigid-body motions inside the moving frame. The first
term ac in Eq. (6) denotes the translational acceleration of the moving frame origin. The term ãðsþ uÞ is the angular
acceleration which is orthogonal on a and ðsþ uÞ. The next term x̃x̃ðsþ uÞ ¼ x� ðx� ðsþ uÞÞ describes the centrifugal
acceleration. The Coriolis acceleration in moving coordinates is described by 2x̃ _u which is perpendicular to both the
direction of the velocity of the moving body and to the rotation axis. Finally, the term €u describes the moving frame
components of the acceleration of the material point as seen by an observer in the moving frame. Based on an FE
discretization the local displacement field for a beam element is interpolated in the form

uelðsel; tÞ ¼ NelðselÞyelðtÞ

NelðselÞ ¼

N2 0 0 0 N3 0 N5 0 0 0 N6 0

0 N2 0 �N3 0 0 0 N5 0 �N6 0 0

0 0 N1 0 0 0 0 0 N4 0 0 0

2
664

3
775

N1 ¼ 1� x; N2 ¼ 2x3
� 3x2

þ 1; N3 ¼ ðx
3
� 2x2

þ xÞLel

N4 ¼ x; N5 ¼ �2x3
þ 3x2; N6 ¼ ðx

3
� x2
ÞLel (7)

x ¼ sel=Lel is a dimensionless interpolation parameter where sel is a local reference length from the beginning sel ¼ 0 to the
end sel ¼ Lel of the element and Lel is the reference length of the beam element. yiðtÞ is the degrees of freedom of the FE
model of the substructure i. In a beam model they represent the moving coordinates of the nodal displacements and
rotations relative to the moving frame of reference and NiðsÞ is an interpolation matrix. The equations of motion of the
substructure i are conveniently derived using analytical mechanics using an extended Lagrangian to account for the
kinematic constraints, in combination with the kinetic energy T ¼ Tðyi; _yiÞ and the potential energy U ¼ UðyiÞ from all
substructures. The latter contains contributions from the strain energy and conservative external loads Q c;iðyiÞ such as
gravity, in addition to vectorial quantities as the non-conservative loads Q nc;iðyiÞ. In principle, these loads may be linearized
in the applied moving frame of reference. The non-conservative loads are caused by the follower character of the
aerodynamic loads. The kinetic energy is most convenient determined by use of the moving frame components of the
velocity vector v from Eq. (5). In a slightly modified version of those given by Kawamoto et al. [8] the resulting equations
become

Mi €yi þ ðC0;i þ 2GiÞ _yi þ ðKe;i þ
_Gi þ Di þ Kg;iÞyi þ BT

i ðyiÞk̄i

¼ �MT
0;iac;i �

_J
T
0;i þ JT

2;i þ Q c;iðyiÞ þQ nc;iðyiÞ (8)

where the Lagrange multipliers k̄i contain the global components of the reaction forces and moments conjugated to the
kinematic constraints and BT

i ðyiÞ is the constraint matrix. Because the constraints have been formulated in the fixed frame
of reference the components of k̄ are also in the fixed frame. The symmetric matrices C0;i and Ke;i denote the structural
damping and elastic stiffness matrix, respectively. The latter includes bending, torsional, and axial stiffnesses. Kg;i denotes
the geometrical stiffness matrix. For a beam-like substructure of the length L this may be written as

Kg;i ¼ O2
ðtÞ

Z
L

Q3ðx3; tÞ
dNT

g;i

dx3

dNg;i

dx3
dx3 (9)

where Q3ðx3; tÞ represents the distribution of the centrifugal axial force for O ¼ 1, so O2
ðtÞQ3ðx3; tÞ denotes the axial force

at the position x3. Ng;i includes the two first rows in Ni which represent the two displacement components orthogonal to
the beam axis. For a wind turbine blade the axial load is caused by the centrifugal and gravity forces. During operation the
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geometric stiffness from the centrifugal axial force will assist to stretch out the blade corresponding to an increased
stiffness and thereby reduce the displacements in the flap direction. Moreover, this term has shown to increase the stability
of the numerical model. The other matrices and vectors are defined as

Mi ¼

Z
L

NT
i Nimdx3; M0;i ¼

Z
L

Nimdx3; Di ¼

Z
L

NT
i x̃ix̃iNimdx3 (10)

Gi ¼

Z
L

NT
i x̃iNimdx3; J0;i ¼ xT

i

Z
L

s̃Nimdx3; J2;i ¼ xT
i

Z
L

s̃x̃iNimdx3 (11)

_Gi ¼

Z
L

NT
i ãiNimdx3;

_J0;i ¼ aT
i

Z
L

s̃Nimdx3 (12)

Mi is the conventional symmetric mass matrix of the body in the moving frame of reference, which in the present
formulation is independent of the moving frame of reference parameters. m ¼ mðsÞ denotes the mass per unit length. M0;i is
a matrix representing the inertial effect of uniform translation. The effect of centrifugal forces due to elastic deformations is
contained in the symmetric matrix Di and the gyroscopic forces are represented by the skew symmetric matrix Gi. The
remaining J0;i and J2;i terms are couplings between the reference position and the shape functions. In Kawamoto et al. [10]
it is shown how Di, Gi, and _Gi can be simplified by extracting x̃i and ãi outside the integration for isoparametric volume
elements. For ease the nonlinearity displayed by the dependency of yi in the load vector is neglected, whereby the
equations of motion conveniently are written in the form

Mi €yi þ Ci _yi þ Kiyi þ BT
i ðyiÞk̄i ¼ fiðtÞ (13)

where

Ci ¼ C0;i þ 2Gi; Ki ¼ Ke;i þ
_Gi þ Di þ Kg;i (14)

fiðtÞ ¼ �MT
0;iac;i �

_J
T
0;i þ JT

2;i þQ c;i þQ nc;i (15)

Ci and Ki may be interpreted as resulting non-symmetric damping and stiffness matrices for the unconstrained
substructure.

To set up the equations of motion for a multibody system it is necessary to introduce kinematical constraints in order to
incorporate compatibility of the mutual displacements and rotations of the substructures. In relation to wind turbines,
displacement constraints between the rotor shaft and the nacelle are specified at the bearings of the nacelle. Rotational
constraints are e.g. prescribed between the rotor shaft and the blade substructure in terms of a controlled pitch angle. The
kinematic constraints are vector relations with components, which need to be defined in a common coordinate system e.g.
a global fixed coordinate system or the moving frame of reference of one of the substructures. The following constraint
equations can be generalized to an arbitrary number of constraints and substructures, but are here shown for two adjacent
substructures. Below, s1;0 and s2;0 denote the referential position vectors in the respective moving frames, defining a point
in substructures 1 and 2 at which a kinematical displacement constraint is specified, and u1;0 and u2;0 are the
corresponding displacement vectors. A displacement constraint which fixes the position of two arbitrary points in the
substructures 1 and 2 becomes, cf. Eq. (2)

Udc ¼ x̄c1 þ R1ðs1;0 þ u1;0Þ � ðx̄c2 þ R2ðs2;0 þ u2;0ÞÞ

¼ x̄c1 þ R1ðs1;0 þ N1;0y1Þ � ðx̄c2 þ R2ðs2;0 þN2;0y2ÞÞ

¼ Bd;1y1 � Bd;2y2 � b ¼ 0 (16)

Bd;i ¼ RiNi;0; b ¼ �ðx̄c1 þ R1s1;0Þ þ ðx̄c2 þ R2s2;0Þ

In an FE formulation, where uiðsi; tÞ is interpolated by a set of shape functions NiðsiÞ and degrees of freedom yiðtÞ,
ui;0ðtÞ ¼ Ni;0yiðtÞ, where Ni;0 ¼ Niðsi;0Þ. Further, R1 and R2 represent the rotation tensors of the moving frames relative to
the global coordinate system. Let ui;0 denote the local rotation components of the interface node relative to the moving
frame of substructure i. The rotation tensor of the said node is then given by

R�i ¼ RiRðui;0Þ ’ RiðIþ ũi;0Þ (17)

where the indicated linearization presumes ju0;ij51. Let n1 and n2 be the local components in the moving coordinate
systems of unit vectors attached to the interface nodes in substructures 1 and 2. The rotation of these vectors is given as
R�1n1 and R�2n2, respectively. Assume that the vectors before and during the elastic deformation of the interface nodes
remain orthogonal. Then the rotational constraint can be specified as

Frc ¼ ðR
�
1n1Þ

TR�2n2 ¼ 0 (18)

A total of three scalar products are necessary to fix the rotations in the joint. In the following derivations, focus is on a
fixed interface where the unit vectors are orthogonal throughout the simulations. By insertion of Eq. (17) in Eq. (18) the
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rotational constraint becomes

Frc ¼ nT
2RT

2R1ñ1u1;0 þ nT
1RT

1R2ñ2u2;0 � nT
1RT

1R2n2 þuT
1;0ñ1RT

1R2ñ2u2;0

¼ nT
2RT

2R1ñ1P1;0y1 þ nT
1RT

1R2ñ2P2;0y2 � nT
1RT

1R2n2 þ ðP1;0y1Þ
Tñ1RT

1R2ñ2P2;0y2

¼ Br;1y1 þ Br;2y2 � b ¼ 0 (19)

Br;1 ¼ nT
2RT

2R1ñ1P1;0; Br;2 ¼ nT
1RT

1R2ñ2P2;0; b ¼ nT
1RT

1R2n2 � ðP1;0y1Þ
Tñ1RT

1R2ñ2P2;0y2, (20)

The rotations are determined by ui;0 ¼ Pi;0yi, where PiðsiÞ represents the compatible rotations derived from the shape
functions. Hereby, both Eqs. (16) and (19) become linear in yi but iterations are necessary due to the rotational constraints.
This can be seen in b in Eq. (20), where it is necessary to insert predicted values of y1 and y2 until it has converged.

Next, the global equations of motion are formulated by combining the equation of motion Eq. (13) for each substructure
with the kinematical constraints Eqs. (16) and (19). For ease this is only demonstrated for a multibody system consisting of
two substructures where the equations attain the form

M1 0 0

0 M2 0

0 0 0

2
64

3
75

€y1

€y2

€̄k

2
64

3
75þ

C1 0 0

0 C2 0

0 0 0

2
64

3
75

_y1

_y2
_̄k

2
64

3
75þ

K1 0 BT
1

0 K2 BT
2

B1 B2 0

2
664

3
775

y1

y2

k̄

2
64

3
75 ¼

f1

f2

b

2
64

3
75

)M€zþ C_zþ Kz ¼ fðtÞ

(21)

where k̄ ¼ k̄1 ¼ �k̄2. Because the constraints in principle introduce infinite stiffness into the global system it becomes
necessary to apply unconditional stable time integrators. In the present case this is achieved by means of a nonlinear
Newmark algorithm.

3. System reduction

The following reduction scheme deals with a specific substructure for which reason the index i is omitted for ease.
Hereby, the equations of motion for the substructure equation (13) are rewritten in the form

M €y þ C _y þ Ky ¼ gðtÞ ¼ fðtÞ � BTk̄ (22)

gðtÞ is a combined load vector encompassing wind loads, inertial loads, and reaction forces from the kinematical
constraints.

3.1. System reduction by use of fixed–fixed and fixed–free eigenmodes

At first, the vector y of dimension n is partitioned into boundary yb and interior ye degrees of freedom i.e. yT ¼ ½yT
b

yT
e �.

The dimensions of yb and ye are nb and ne ¼ n� nb, respectively. The method will be illustrated with beam elements with 6
degrees of freedom for each node. Hereby nb takes either the value 6 or 12 depending on the substructure has a free end or
not. The two different sets of boundary conditions are sketched in Figs. 2a and b. When a blade is modelled by two or more
substructures the boundary conditions in Figs. 2a and b are used for the innermost and outermost substructures,
respectively. In Figs. 2c and d constraint modes from a unit displacement for the two types of boundary conditions are
sketched. Similarly, in Figs. 2e and f constraint modes from a unit rotation are sketched. Obviously, the constraint modes
account for the rigid-body motion of the substructure. Eq. (22) takes the following form by use of the partitioning of y:

Mbb Mbe

Meb Mee

" #
€yb

€ye

" #
þ

Cbb Cbe

Ceb Cee

" #
_yb

_ye

" #
þ

Kbb Kbe

Keb Kee

" #
yb

ye

" #
¼

gb

ge

" #
(23)

Next, the interior degrees of freedom ye are written as a combination of the quasi-static response from the boundary
degrees of freedom yb superposed with a modal representation of the remaining part of the internal response as follows:

ye ¼ �K�1
ee Kebyb þUq (24)

q ¼

q1ðtÞ

..

.

qne
ðtÞ

2
664

3
775; U ¼ ½U1 � � � Une � (25)

Uj is the jth fixed interface normal mode and qj is the related generalized coordinate. In Figs. 2g and h an example of a fixed
interface normal mode is sketched by use of the two types of boundary conditions. These eigenmodes are determined from
the following generalized eigenvalue problem

ðKeeðx;a;OÞ �o2
j MeeÞUj ¼ 0 (26)
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Fig. 2. (a) Boundary conditions for interior substructures. (b) Boundary conditions for substructure with a free end. (c)–(f) Constraint modes based on a

unit displacement and unit rotation of the interface nodes. (g)–(h) Fixed interface normal modes.
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It is intended that the eigenmodes are constant in time, whereby it is necessary to select the components of the angular
velocity vector, angular acceleration vector, and the operating angular frequency, which all are used to set up the stiffness
matrix in Eq. (14). oj denotes the undamped angular eigenfrequencies of the substructure with fixed boundary degrees of
freedom yb ¼ 0. The eigenmodes are ordered in ascending magnitude of the frequency oj and those with frequencies above
a certain threshold frequency o0 are truncated, whereas the remaining eigenmodes respond dynamically. Then, the
dynamic degrees of freedom qd and dynamic eigenmodes Ud become

qd ¼

q1ðtÞ

..

.

qnd
ðtÞ

2
6664

3
7775; Ud ¼ ½U1 � � � Und

� (27)

where qd has the dimensions ndone. The degrees of freedom yðtÞ and their time derivatives defining the substructure can
hereby be presented in the following reduced form:

yðtÞ ¼ AwðtÞ; _yðtÞ ¼ A _wðtÞ; €yðtÞ ¼ A €wðtÞ (28)

where

A ¼
I 0

V Ud

" #
; V ¼ �K�1

ee Keb; w ¼
yb

qd

" #
(29)

Insertion of Eq. (28) in Eq. (22) and premultiplication with AT provide the following reduced equations of motion:

m €wþ c _wþ kw ¼ ATgðtÞ (30)

where

m ¼ ATMA

c ¼ ATCA

k ¼ ATKA

9>=
>; (31)

Notice that none of the reduced matrices have a diagonal structure. To set up the system equations of motion it is necessary
to partition BT and f in Eq. (22) consistently with the partition of y.
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3.2. System reduction by use of fixed–free eigenmodes

To be used for later comparison an alternative variant is used to model the innermost substructures of the blade. This is
done by use of the procedure described above for the outermost substructure. Hereby, the innermost substructures are
described by use of fixed–free eigenmodes and the dimension of the boundary degrees of freedom is nb ¼ 6 corresponding
to the fixed end. Hereby, the first six columns in A correspond to rigid-body modes.

3.3. Reduced system of equations

Based on the derived system reduction algorithm a substructure in the system can be reduced by use of Eq. (30)
together with Eq. (28) for the constraints. For the illustrative example described by Eq. (21) substructure 1 will be reduced,
whereas substructure 2 is left unchanged
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The state vector related to the reduced system is now defined as

zðtÞ ¼

w1

y2

k

2
64

3
75 (33)

4. Updating of system state vector and moving frame of reference

At first an introductory overview of the following updating algorithm will be given based on a number of 2D
illustrations depicted in Fig. 3. The updating scheme of the moving frame of reference follows the same principles as
described in Kawamoto et al. [8]. The orientation of the moving frame of reference with the related rotation tensor RðtÞ has
been indicated at various levels of the updating procedure. The corresponding degrees of freedom vector yðtÞ is
symbolically indicated by the position vector of the interface node, describing the position and rotation of the substructure
from the moving frame, see Fig. 3a. At the time t ¼ tj the system state vector zj ¼ zðtjÞ along with its time derivatives
_zj ¼ _zðtjÞ and €zj ¼ €zðtjÞ are known. Additionally, several parameters describing the motion of the moving frame of reference
for each substructure are known. These are the global components of the position vector of the origin x̄c;j ¼ x̄cðtjÞ, the
related velocity vector v̄c;j ¼ v̄cðtjÞ, and acceleration vector āc;j ¼ ācðtjÞ, as well as the components of the rotation tensor
Rj ¼ RðtjÞ and the moving frame components of the angular velocity and angular acceleration vectors xj ¼ xðtjÞ, and
aj ¼ aðtjÞ, respectively. All these known parameters and system vectors make the starting point at the determination of the
Fig. 3. (a) Moving frame and substructure at the initial situation at time t ¼ tj . (b) Prediction of moving frame and system state vector at time

tjþ1 ¼ tj þ Dt. (c) Determination of the system state vector for the first iteration step. (d) Updating of the moving frame based on the motion of two

boundary nodes. (e) Updated position and orientation of the moving frame. (f) Determination of the system state vector for the second iteration referring

the motion of the substructure to the updated moving frame of reference.
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corresponding quantities at the new time tjþ1 ¼ tj þDt, on condition that the new load vector fjþ1 ¼ fðtjþ1Þ can be
calculated. In what follows an upper index ðkÞ is used to specify the iteration step during the considered time step. Initially,
predicted values based on simple Taylor expansions for the vectors related to the moving frame and the moving
substructure at the time tjþ1 are determined from the corresponding values at time tj. Predicted values are denoted with an
upper index k ¼ 0, and the prediction step has been sketched in Fig. 3b. Next, the equations of motion Eq. (32) are solved
with the predicted values entering the system matrices and vectors. Hereby, the nodal displacement vector for the first
iteration yð1Þ

jþ1
together with its time derivatives are determined, see Fig. 3c. Dy indicates the displacement difference

between predicted and corrected estimates, which should be zero when the displacements of the substructure from the
moving frame are converged. Based on the displacements of the substructure from the moving frame of reference another
convergency criterion is set up. If these displacements are above a chosen tolerance the moving frame of reference is
updated. The position of the origin together with its time derivatives is updated based on the motion of the belonging
boundary node of the substructure. The orientation together with angular velocity and angular acceleration is updated by
use of the motion of two boundary nodes, as sketched in Fig. 1c. In Fig. 3d both nodes are sketched, where they have been
labelled A and B and the position vector in Eq. (1) from the origin of the moving frame to these nodes is denoted xA and xB,
respectively. In Fig. 3e the updated position and orientation of the moving frame of reference are illustrated. If convergence
has not been achieved the updated system equations are solved again with updated system matrices and vectors. Hereby, a
new nodal displacement vector yð2Þ

jþ1
is determined referring the motion of the substructure to the updated moving frame of

reference given by the rotation tensor Rð1Þ
jþ1

, see Fig. 3f. This iteration continues until convergency is obtained.
Next, the indicated updating algorithm is described in a formal way. At the instant of time t ¼ tjþ1 the vectors related to

the origin of the moving frame of reference are predicted by the truncated Taylor expansions of the solution from the
previous time step

x̄ð0Þ
c;jþ1

¼ x̄c;j þ v̄c;jDt þ 1
2āc;jDt2; v̄ð0Þ

c;jþ1
¼ v̄c;j þ āc;jDt; āð0Þ

c;jþ1
¼ āc;j (34)

x̄ð0Þ
c;jþ1

is used in the displacement constraints Eq. (16). The moving frame components of the vectors defining the rotation of
the moving frame of reference are similarly predicted by the Taylor expansions

Dw
ð0Þ
jþ1
¼ xjDt þ 1

2ajDt2; xð0Þ
jþ1
¼ xj þ ajDt; að0Þ

jþ1
¼ aj (35)

Dw
ð0Þ
jþ1

denotes the moving frame components of the predicted rotation vector of the moving frame during the interval Dt.
The rotation tensor Rð0Þ

jþ1
, corresponding to the moving frame orientation after the rotation Dw

ð0Þ
jþ1

, is next determined by use
of Rodriguez formula Eq. (3)

Rð0Þ
jþ1
¼ RjRðDw

ð0Þ
jþ1
Þ (36)

In Eq. (15) the moving frame components of the acceleration of the origin are needed. These are determined from the
corresponding global components via the transformation

að0Þ
c;jþ1

¼ Rð0ÞT
jþ1

āð0Þ
c;jþ1

(37)

Next, the system coordinates are predicted based on the truncated Taylor expansions

zð0Þ
jþ1
¼ zj þ _zjDt þ 1

2
€zjDt2; _zð0Þ

jþ1
¼ _zj þ €zjDt; €zð0Þ

jþ1
¼ €zj (38)

Hereby, all predicted parameters for the moving frame of reference together with the predicted system coordinates are
determined. The damping matrix Cð0Þ, stiffness matrix Kð0Þ, and mass matrix M from Eq. (32) are determined next. Here, it
should be noted that the mass matrix is independent of the moving frame parameters and thereby constant. In order to
solve Eq. (32) the residual r and equivalent system stiffness matrix K̂ are determined by use of the nonlinear Newmark
algorithm, Géradin and Rixen [27]

r ¼ �M€zð0Þ
jþ1
� Cð0Þ _zð0Þ

jþ1
� Kð0Þzð0Þ

jþ1
þ fð0Þ

jþ1
; K̂ ¼

1

bDt2
Mþ

g
bDt

Cð0Þ þ Kð0Þ (39)

where g ¼ 1
2þ a, b ¼ 1

4ð1þ aÞ
2, and a is used to incorporate numerical damping. By solving K̂Dz ¼ r for the unknowns Dz,

the following corrected values of the system coordinates are determined:

zð1Þ
jþ1
¼ zð0Þ

jþ1
þ Dz; _zð1Þ

jþ1
¼ _zð0Þ

jþ1
þ

g
bDt

Dz; €zð1Þ
jþ1
¼ €zð0Þ

jþ1
þ

1

bDt2
Dz (40)

Hereby the displacement and rotation degrees of freedom of the substructure referred to the moving frame of reference
can be determined together with their time derivatives. In case of using the reduced models the transformations to the full
set of degrees of freedom are performed by use of Eq. (28). The displacements and rotations at the boundaries are referred
to as uA, uA, and uB, uB. The same notation follows for the time derivatives of the displacements and rotations. The used
convergency criterion is based on the position of the moving frame of reference. Therefore, the Euclidian norms of uA and
uB are used. If these norms are within a chosen tolerance there is no need to update the moving frame of reference and the
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present solution is used as input in the new time step. If this is not the case, the moving frame of reference parameters are
updated.

The position, velocity and acceleration of the origin of the moving frame of reference are updated by use of Eqs. (2), (5)
and (6)

x̄ðkþ1Þ
c;jþ1

¼ x̄ðkÞ
c;jþ1
þ RðkÞ

jþ1
uA (41)

v̄ðkþ1Þ
c;jþ1

¼ v̄ðkÞ
c;jþ1
þ RðkÞ

jþ1
ðx̃ðkÞ

jþ1
ðsþ uAÞ þ _uAÞ (42)

āðkþ1Þ
c;jþ1

¼ āðkÞ
c;jþ1
þ RðkÞ

jþ1
ððãðkÞ

jþ1
þ x̃ðkÞ

jþ1
x̃ðkÞ

jþ1
Þðsþ uAÞ þ 2x̃ðkÞ

jþ1
_uA þ €uAÞ (43)

In the following, the update of the orientation, angular velocity and angular acceleration of the moving frame of reference
is described, which is based on the motion of both boundary nodes A and B. The purpose of the present update is to align
the beam axis and thereby the x3-axis so it passes through both nodes. In order to determine the orientation of the
remaining x1- and x2-axes the average rotation j3 around the beam axis is used, which is given by the third rotation
component at the two nodes

j3 ¼
1
2ðjB;3 þjA;3Þ (44)

Then, the two basis vectors n1 and n2 for the x1- and x2-axis are given as

½n1 n2 n3� ¼

cosj3 � sinj3 0

sinj3 cosj3 0

0 0 1

2
64

3
75 (45)

The purpose is to rotate the full basis through the minimum angle bringing one of the vectors into a given new direction.
In the present case the vector n3 is to be rotated into the direction of the beam axis defined by the unit vector
ðxB � xAÞ=jxB � xAj, where xA and xB are the position vectors of the end nodes relative to the moving frame origin cf. Fig. 3d.
First, the mean direction is defined by the unit vector n

n ¼ n3 þ
xB � xA

jxB � xAj
; n:¼n=jnj (46)

Next, a Householder transformation is used, which corresponds to a reflection in the plane orthogonal to the unit vector
n, Krenk [28]

DR ¼ ðI� 2nnTÞ½n1 n2 � n3� (47)

Hereby, a new set of unit vectors contained in DR are determined, which describe the updated orientation seen from the
present orientation of the moving frame of reference. The updated rotation tensor is given by, cf. Fig. 3e

Rðkþ1Þ
jþ1

¼ RðkÞ
jþ1

DR (48)

In order to update the angular velocity it is used that the global components of the velocity at node B should be the same
in the present known configuration of the moving frame and in the updated one. The global components of the velocity at
node B are determined by use of Eq. (5)

v̄B ¼ v̄ðkÞ
c;jþ1
þ RðkÞ

jþ1
ðx̃ðkÞ

jþ1
ðsB þ uBÞ þ _uBÞ (49)

where sB given in the updated moving frame of reference marks the node B. The updating strategy presumes that the local
displacement and velocity at B vanish, cf. Fig. 3e. Hereby, by use of Eq. (5) and the results from Eq. (49) the following
relation is obtained for the updated angular velocity

Rðkþ1ÞT

jþ1
ðv̄B � v̄ðkþ1Þ

c;jþ1
Þ ¼ x̃ðkþ1Þ

jþ1
sB (50)

The two first rows give a solution for the two first components of the angular velocity oðkþ1Þ
1;jþ1

and oðkþ1Þ
2;jþ1

. The third
component is determined from the previous known value and the average of the belonging angular velocity component of
the two nodes

oðkþ1Þ
3;jþ1

¼ oðkÞ
3;jþ1

þ 1
2ð
_jB;3 þ _jA;3Þ (51)

Similarly, the angular acceleration is determined by use of Eq. (6)

āB ¼ āðkÞ
c;jþ1
þ RðkÞ

jþ1
ððãðkÞ

jþ1
þ x̃ðkÞ

jþ1
x̃ðkÞ

jþ1
ÞðsB þ uBÞ þ 2x̃ðkÞ

jþ1
_uB þ €uBÞ (52)



ARTICLE IN PRESS

K. Holm-Jørgensen, S.R.K. Nielsen / Journal of Sound and Vibration 326 (2009) 753–767 763
Rðkþ1ÞT

jþ1
ðāB � āðkþ1Þ

c;jþ1
Þ � x̃ðkþ1Þ

jþ1
x̃ðkþ1Þ

jþ1
sB ¼ ãðkþ1Þ

jþ1
sB (53)

aðkþ1Þ
3;jþ1

¼ aðkÞ
3;jþ1

þ 1
2ð
€jB;3 þ €jA;3Þ (54)

5. Numerical example

In this section the theory is illustrated with a simplified system consisting of a wind turbine blade divided into two
substructures labelled 1 and 2. The fixed frame of reference is shown in Fig. 4a and the two substructures are shown in
Fig. 4b. The origin of the initial moving frame of reference ðx1;1; x2;1; x3;1Þ belonging to substructure 1 is identical to the
fixed frame of reference ðx̄1; x̄2; x̄3Þ whereas the origin of the initial moving frame of reference ðx1;2; x2;2; x3;2Þ belonging to
substructure 2 is displaced half the blade length in the x̄3-direction. In total 11 constraints are introduced where six fix
displacements and rotations at the assembling point of the two substructures. The remaining five constraints are used at
the origin of substructure 1. Here, three constraints fix the displacements and two constraints fix the rotation around the
x̄2- and x̄3-axes. I.e. at the root it is only possible for the blade to rotate around the x̄1-axis. The moving frame of reference
for both substructures is updated based on the motion of the two end points in each substructure. The updating algorithm
is described in Section 4 and the x3-axis for the two moving frames are sketched in Fig. 4c. The length of the blade is 44.8 m
with a total weight of 10 t and it is constructed by NACA 63-418 section profiles. The cross section parameters throughout
the blade are presented in Fig. 5. A Young’s modulus of E ¼ 3� 1010 Pa, shear modulus of G ¼ E=2:6, and density r ¼
2� 103 kg m�3 are used for all sections. The element stiffness matrix is setup in principal directions and rotated the angle
f to align with the ðx1; x2Þ-coordinate system, see Fig. 5f. The FE model of both substructures is based on prismatic
Bernoulli–Euler beam elements with St. Venant torsion and has 6 degrees of freedom for each node. Both substructures
have equal reference length of 22.4 m and both are discretized by use of 10 prismatic elements of equal length. This FE
model constitutes the full model which the reduced models are compared to. No structural damping is included i.e. C0 ¼ 0
in Eq. (14) and a ¼ 0:08 is used to incorporate numerical damping in the nonlinear Newmark algorithm with constant time
steps of Dt ¼ 0:02 s. The moving frames are updated in each time step. In Holm-Jørgensen and Nielsen [11] the three lowest
undamped fixed-base circular eigenfrequencies of the blade are o1 ¼ 5:15, o2 ¼ 9:51, and o3 ¼ 14:23. In determining
these a constant angular velocity of the moving frame corresponding to the operating frequency of the rotor is used to set
up the stiffness matrix.

The purpose of the numerical simulation is to verify that the results from the reduced model based on fixed–fixed
interface normal modes for substructure 1 are almost identical to the full FE model. Moreover, the importance of using
compatible interface normal modes at the assembling point to substructure 2 is illustrated by use of fixed–free interface
normal modes for substructure 1, with the free end at the assembling points. For both reduced models, substructure 2 is
modelled by use of fixed–free interface normal modes. For comparison of the two reduced models it is chosen to keep the
same number of degrees of freedom. When referring to the number of fixed–fixed and fixed–free interface normal modes, it
is only the modes with the lowest eigenfrequencies cf. Eq. (26) which are used and the remaining modes are truncated. In
one case substructure 1 has 12 boundary degrees of freedom and three fixed–fixed interface normal modes. In the other
case substructure 1 is modelled by 6 boundary degrees of freedom and nine fixed–free interface normal modes. In both
Fig. 4. (a) Fixed frame of reference in the wind turbine. (b) In the numerical model the blade is divided into two substructures labelled 1 and 2. (c)

Illustration of the x3-axis for the moving frame of reference belonging to substructure 1 and 2 denoted by x3;1 and x3;2, respectively.
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Fig. 5. (a) Principal moment of inertia around x01. (b) Principal moment of inertia around x02. (c) St. Venant torsional constant. (d) Areal of cross section. (e)

Pretwist angle defined as the angle between the tangential x2-axis and principal x02-axis. (f) Sign definition of f.

Fig. 6. (a) Load component in the x2-direction. (b) Load component in the x̄1-direction.
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cases substructure 2 is modelled as fixed–free with a total of 6 boundary degrees of freedom and 12 fixed–free interface
normal modes. Hereby, the FE model has 132 degrees of freedom and the reduced models have 33 degrees of freedom.

5.1. Exterior load and fixed interface normal modes

The numerical simulation consists of a start-up sequence and an operating sequence. The start-up sequence is split in
two where the first sequence 0 � t � t1 speeds up the blade from a stopped situation at t ¼ 0 to the nominal angular
velocity On ¼ 1:6 rads�1 of the rotor at t ¼ t1. In the second sequence t1ot � t2 an exterior load in the global x̄1-direction
is stepped up. In the operating sequence t4t2 the exterior load is based on a constant load corresponding to a mean wind
velocity and a harmonic component due to a variation in the shear wind field. The sequences are modelled by applying
concentrated loads at a node in the beam model placed at the moving coordinate x3;2 ¼ 6:72 m. The reason for applying the
load at this point is because the maximum intensity of the wind load is concentrated around this position. The components
of the applied exterior load at substructure 2 are shown in Fig. 6 and defined as

f2ðtÞ ¼

½0 1 0�T
1

2
P0 1� cos

2p
t1

t

� �� �
; 0 � t � t1

RT
2½1 0 0�TP1 �

t � t1

t2 � t1

� �2

þ 2
t � t1

t2 � t1

 !
; t1ot � t2

RT
2½1 0 0�TP1 1þ p cos Onðt � t2Þ

� �
� p

� �
; t4t2

8>>>>>>><
>>>>>>>:

(55)

Here, it is seen that the applied load in the sequence 0 � t � t1 is oriented in the edge direction in order to speed-up the
blade. In the other two sequences the load is oriented in the x̄1-direction i.e. primarily in the flap direction. In the
simulations the following values have been used: P0 ¼ �3:5� 104 N, P1 ¼ 1:5� 105 N, p ¼ 0:1, On ¼ 1:6 rad � s�1,
t1 ¼ 10 s, and t2 ¼ 20 s. Based on the applied load the components of the angular velocity and angular acceleration of the
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moving frames during the time series are determined by use of the FE model. The orientation of the moving frames given
by the parameter vector h is determined by use of Spurriers algorithm, see e.g. Crisfield [29]. All three components of the
parameter vector, angular velocity, and angular acceleration for the two moving frames are plotted in Fig. 7. Here, it is
shown that for both substructures 1 and 2 the first component of the angular velocity of the belonging moving frame of
reference is almost constant at o1;1 ’ o1;2 ’ 1:6 rad s�1 in the operating sequence t4t2 and considerably larger than the
second and third components. The reason for not being constant is because no generator is applied to control the angular
velocity. Another reason is that the blade is twisted resulting in both flap and edge wise displacements when a load in the
flap direction is applied. It can also be seen that all second and third components for substructure 1 are considerably
smaller than for substructure 2. This is due to the small displacement in the x̄1-direction at the end node of this
substructure which leaves the x3;1-axis almost orthogonal to the x̄1-axis. Moreover, in the operating situation the angular
acceleration is close to zero. When creating the fixed interface normal modes Eq. (26) for the reduced models it is
computational advantageous if these are constant throughout the simulated time series. Similarly with the constraint
modes listed in Eq. (29). As seen from Eq. (14), the stiffness matrix consists of the elastic stiffness Ke, the geometric stiffness
Kg and the gyroscopic stiffness terms D and _G which depend on the angular velocity and angular acceleration of the moving
frame, respectively. In a previous paper by the authors [11] three different stiffness matrices were used to extract the
eigenmodes for a blade modelled by fixed–free eigenmodes, depending on different values of the angular velocity and
angular acceleration vectors and different terms of the included stiffness matrices from Eq. (14). Small differences were
observed but the overall best results were obtained by use of

K ¼ Ke þ KgðOnÞ þ DðxnÞ; xn ¼

On

0

0

2
64

3
75 (56)
Fig. 7. Moving frame components of the parameter vector h, angular velocity x, and angular acceleration a for the two moving frames. (a)–(c) First

component. (d)–(f) Second component. (g)–(i) Third component. (- -) Substructure 1. (—) Substructure 2.
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which is used for both substructures in the present simulations. For all situations the same mass matrix M from Eq. (10) is
used when solving the generalized eigenvalue problem Eq. (26).
5.2. Results for response and constraint

Results for the tip position of the blade in x̄1 during the time series 10 � t � 30 s are shown in Fig. 8a for the FE model,
and the two reduced models with fixed–fixed and fixed–free interface normal modes for substructure 1. The results from
the FE model are used to normalize the results from the reduced models shown in Fig. 8b. The reason for not displaying the
first 10 s is because these displacements in x̄1 are small, and the normalized response of the reduced models is outside the
area of interest. In Fig. 8b the results by use of the fixed–fixed modes are very close to the full FE model, even though these
modes are constant throughout the time series. Moreover, these modes are based on a constant angular velocity around
just one axis, where it is shown in Fig. 7 that this is not the actual case, especially for substructure 2. By use of the
fixed–free modes the size of the response is notably changed. The importance of using compatible interface normal modes
at the assembling point between the substructures is hereby demonstrated.

In Fig. 9a the Lagrange multiplier for the displacement constraint in the x̄1-direction at the root of the blade is shown.
Here, the reaction force is approximately P1 at t ¼ 20 s and has a mean value of approximately 1:35� 105 N for t420 s
corresponding to the applied load component. In Fig. 9b the normalized Lagrange multiplier by use of fixed–fixed and
fixed–free interface normal modes for substructure 1 is presented. Again, the best results are obtained by use of fixed–fixed
modes, but the results by use of fixed–free modes are at least centred around the results from the FE model.
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Fig. 8. (a) Tip position in x̄1. (b) Normalized tip position in x̄1. (—) FE model. (- -) Fixed–fixed modes. (—) Fixed–free modes.
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Fig. 9. (a) Lagrange multiplier for displacement constraint in the x̄1-direction at the hub of the blade. (b) Normalized Lagrange multiplier. (—) FE model.
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6. Conclusions

In this paper it is demonstrated that an FE model of a wind turbine blade divided into two substructures in the used
multibody formulation with completely freely moving local frames of reference efficiently can be reduced by use of
constraint modes and fixed interface normal modes. Even by keeping these modes constant throughout the numerical
simulations, where the blade goes from a stopped situation to the nominal operating situation, the results are almost
identical to the full FE model. The importance of using compatible modes at the assembling point between the
substructures of the blade is demonstrated. Further, an updating algorithm for the freely moving frame based on the
motion of two arbitrary nodes in the substructure has been devised and its applicability has been demonstrated by use of
the end nodes in the belonging substructures. For smaller displacements of the substructure from the moving frame of
reference and to get a better nonlinear description of the displacements the reference length of the two multibodies should
be further examined instead of splitting the blade into two multibodies of equal reference length.
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